Search Add a publication

ID No : 968   Edit
Title: Providing Oxygen for the Crew of a Lunar Outpost
Summary / Review : "Oxygen (O2) is obviously essential for human space missions, but it is important to examine all the different ways it will be used and the potential sources that it may come from. This effort will lead to storage and delivery requirements and help to determine the optimum architecture from an overall systems engineering point of view. Accounting for all the oxygen in a Lunar Outpost mission includes meeting the metabolic needs of the crew while in the surface Habitat, leakage through the Habitat or Pressurized Rover walls, recharge of the space suit backpack and emergency situations. Current plans indicate that both primary and secondary O2 bottles for the space suit will be filled to a pressure of 20.7 MPa (3000 psia). Other uses of O2 require much lower pressure. Sources of O2 at a Lunar Outpost include compressed or liquefied O2 brought along specifically for life support, scavenged O2 from the Lander propulsion system, recovered O2 from waste water or exhaled carbon dioxide and O2 mined from the moon itself. Previously, eight technology options were investigated to provide the high pressure space suit O2. High pressure O2 storage was treated as the baseline technology and compared to the other seven. The other seven were cryogenic storage followed by high pressure vaporization, scavenging liquid oxygen (LOX) from Lander followed by vaporization, LOX delivery followed by sorption compression, low pressure water electrolysis followed by mechanical compression, high pressure water electrolysis, sharing a high pressure electrolyzer with a regenerative fuel cell power system, and making use of In- Situ Resource Utilization (ISRU). This system-level analysis was conducted by comparing equivalent system mass of the eight technologies in open and closed loop life support architectures. The most promising high pressure O2 generation technologies were recommended for development. Updates and an expansion of the earlier study have been made and the results are reported in this paper. Examples of recent analyses include feasibility of recovering space suit purge O2 in a Pressurized Rover and using sub-critical LOX for primary supply while using high-pressure gaseous O2 as the secondary supply for the space-suit. Preliminary analysis on scavenging LOX from the Lander and delivering it to the Habitat has also been incorporated into this integrated lunar fluids analysis" (Author's abstract)
Author(s) : Ewert, Michael K.; Jeng, Frank; Conger, Bruce; Anderson, Molly S., [Johnson Space Center]
Publication Date: 2009
Category(s) : Products / Oxygen
Bases, industry and manufacturing / Resource processing and outputs / Oxygen production
Web URL : http://hdl.handle.net/2060/20090013081
If this link is broken, please Add Comment below.
We try to keep author contact details, and a backup copy in our offline library.
PERMANENT code(s) : L,U
(Explanation of the
last 3 rows above)
In the row above, there are up to 4 possibilities:
U = URL you can click on to get a copy instantly from another source on the internet, or request it from that source
D = Downloadable from PERMANENT (such as because no other URL known...)
L = LAN copy, PERMANENT has a digital copy but not downloadable from our website
P = Paper copy in the PERMANENT office
Typically, only 0 to 3 methods are available.
NTRS : 20090013081
Other Ref # : JSC-CN-17889, JSC-CN-18742
Submitted by : MEP
Comments: Please add your thoughtful Comments to this paper after reading it.
All comments are reviewed and approved before being posted publicly below.
If you wish to submit a private comment to the curator, instead of a public comment, just write "Private" at the start of your comment.
Corrections and suggested additions to our records are appreciated.
  Add Comment 
Add Comment     Green is public,     Pink is private.
Screen Name: Either real name or anonymous alias are OK.
Real Name and
optional info:

Please provide at least your real name, and optionally additional information.
Email Address: We keep your email address private.
Date - Time Sorry, just click on the field, then on the popup calendar click "Now" then "Done".
Your Comment: (if private to curator, then just start with "Private:" or something like that.)