Search | Add a publication |
ID No : | 734 Edit | Title: | Testing and Failure Mechanisms of Ice Phase Change Material Heat Exchangers |
Summary / Review : | "Phase change materials (PCM) may be useful for thermal control systems that involve cyclical heat loads or cyclical thermal environments such as Low Earth Orbit (LEO) and Low Lunar Orbit (LLO). Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. One advantage that PCM s have over evaporators in this scenario is that they do not use a consumable. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents the results of testing that occurred from March through September of 2010 and builds on testing that occurred during the previous year." (Author's abstract) |
Author(s) : |
Leimkuehler, Thomas O.; Stephan, Ryan A.; Hawkins-Reynolds, Ebony, [Johnson Space Center] |
Publication Date: | 2010 |
Category(s) : |
Bases, industry and manufacturing / Power / Thermal Bases, industry and manufacturing / Power / Energy storage |
Web URL : |
http://hdl.handle.net/2060/20100039447
If this link is broken, please Add Comment below. We try to keep author contact details, and a backup copy in our offline library. |
PERMANENT code(s) : | L,U |
(Explanation of the last 3 rows above) |
In the row above, there are up to 4 possibilities: U = URL you can click on to get a copy instantly from another source on the internet, or request it from that source D = Downloadable from PERMANENT (such as because no other URL known...) L = LAN copy, PERMANENT has a digital copy but not downloadable from our website P = Paper copy in the PERMANENT office Typically, only 0 to 3 methods are available. |
NTRS : | 20100039447 |
Other Ref # : | JSC-CN-22153 |
Submitted by : | MEP |
Comments: |
Please add your thoughtful Comments to this paper after reading it. All comments are reviewed and approved before being posted publicly below. If you wish to submit a private comment to the curator, instead of a public comment, just write "Private" at the start of your comment. Corrections and suggested additions to our records are appreciated. |
Add Comment |