Search | Add a publication |
ID No : | 691 Edit | Title: | Advanced Space Fission Propulsion Systems |
Summary / Review : |
Nuclear fission powered space propulsion.
"Fission has been considered for in-space propulsion since the 1940s. Nuclear Thermal Propulsion (NTP) systems underwent extensive development from 1955-1973, completing 20 full power ground tests and achieving specific impulses nearly twice that of the best chemical propulsion systems. Space fission power systems (which may eventually enable Nuclear Electric Propulsion) have been flown in space by both the United States and the Former Soviet Union. Fission is the most developed and understood of the nuclear propulsion options (e.g. fission, fusion, antimatter, etc.), and fission has enjoyed tremendous terrestrial success for nearly 7 decades. Current space nuclear research and technology efforts are focused on devising and developing first generation systems that are safe, reliable and affordable. For propulsion, the focus is on nuclear thermal rockets that build on technologies and systems developed and tested under the Rover/NERVA and related programs from the Apollo era. NTP Affordability is achieved through use of previously developed fuels and materials, modern analytical techniques and test strategies, and development of a small engine for ground and flight technology demonstration. Initial NTP systems will be capable of achieving an Isp of ~900 s at a relatively high thrust-to-weight ratio. The development and use of first generation space fission power and propulsion systems will provide new, game changing capabilities for NASA. In addition, development and use of these systems will provide the foundation for developing extremely advanced power and propulsion systems capable of routinely and affordably accessing any point in the solar system. The energy density of fissile fuel (8 x 10(exp 13) Joules/kg) is more than adequate for enabling extensive exploration and utilization of the solar system. For space fission propulsion systems, the key is converting the virtually unlimited energy of fission into thrust at the desired specific impulse and thrust-to-weight ratio. This presentation will discuss potential space fission propulsion options ranging from first generation systems to highly advanced systems. Ongoing research that shows promise for enabling second generation NTP systems with Isp greater than 1000 s will be discussed, as will the potential for liquid, gas, or plasma core systems. Space fission propulsion systems could also be used in conjunction with simple (water-based) propellant depots to enable routine, affordable missions to various destinations (e.g. moon, Mars, asteroids) once in-space infrastructure is sufficiently developed. As fuel and material technologies advance, very high performance Nuclear Electric Propulsion (NEP) systems may also become viable. These systems could enable sophisticated science missions, highly efficient cargo delivery, and human missions to numerous destinations. Commonalities between NTP, fission power systems, and NEP will be discussed." (Author's abstract) |
Author(s) : |
Houts, Michael G.; Borowski, Stanley K., [Glenn Research Center; Marshall Space Flight Center] |
Publication Date: | 2010 |
Category(s) : |
Transportation / Interorbital / Propulsion |
Web URL : |
http://hdl.handle.net/2060/20110005504
If this link is broken, please Add Comment below. We try to keep author contact details, and a backup copy in our offline library. |
PERMANENT code(s) : | L,U |
(Explanation of the last 3 rows above) |
In the row above, there are up to 4 possibilities: U = URL you can click on to get a copy instantly from another source on the internet, or request it from that source D = Downloadable from PERMANENT (such as because no other URL known...) L = LAN copy, PERMANENT has a digital copy but not downloadable from our website P = Paper copy in the PERMANENT office Typically, only 0 to 3 methods are available. |
NTRS : | 20110005504 |
Other Ref # : | M11-0080 |
Submitted by : | MEP |
Comments: |
Please add your thoughtful Comments to this paper after reading it. All comments are reviewed and approved before being posted publicly below. If you wish to submit a private comment to the curator, instead of a public comment, just write "Private" at the start of your comment. Corrections and suggested additions to our records are appreciated. |
Add Comment |